7TH GRADE STUDENTS’ IMPLEMENTATİON OF A MODEL-ELİCİTİNG ACTİVİTY THROUGH TRANSDİSCİPLİNARY TEACHİNG
DOI:
https://doi.org/10.5281/zenodo.15002445Keywords:
Transdisciplinary teaching approaches, mathematical modeling, modeling competenciesAbstract
The integration of programs is an approach or teaching strategy aimed at teaching knowledge, skills, and values obtained from different disciplines in a more meaningful way as a concept. The purpose of this study is to investigate how modeling creation activities, prepared with an interdisciplinary approach, reflect in the modeling process. The research, conducted using the teaching experiment method, was carried out with a sample group of 18 students from the 7th grade of ha public school in the Altıeylül district of Balıkesir province during the 2023-2024 academic year. The "Recycling" theme was determined, and students worked in groups on modeling creation activities prepared within the framework of the transdisciplinary approach. In this study, the "Detergent Consumption Problem" was chosen from the modeling creation activities applied through group work. The data of the study consist of transcriptions of video and audio recordings, which include the discussions of the groups during the solution of the problem and their presentations in class, researcher's observation notes, and student work documents. To analyze the data, the Modeling Competency Evaluation Rubric [MCER] was used to determine the levels of the groups' modeling competencies. The data, analyzed through descriptive analysis, were evaluated using the MCER, which was developed within a cognitive perspective, to determine the students' levels of mathematical modeling competencies.
References
Altun, M. (2012). Matematik Öğretimi. Bursa: Alfa Aktüel Yayınları.
Blum, W., & Leiss, D. (2007). How do students and teachers deal with modeling problems? The example "Sugarloaf" and the DISUM project. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modeling (ICTMA 12): Education, engineering and economics (pp. 222-231). Horwood Publishing.
Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.
Blum, W., & Kaiser, G. (1997). Vergleichende empirische untersuchungen zu mathematischen anwendungsfähigkeiten von englischen und deutschen Lernenden. Unpublished application to Deutsche Forschungsgesellschaft.
Blum, W., Galbraith, P., Henn, H. W., & Niss, M. (2007). Modelling and applications in mathematics education. New York: Springer.
Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Retrived from https://www.springer.com/gp/book/9783319680712
Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as a tool to develop and identify creatively gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37-47.
Czarnocha, B., & Maj, B. (2008). A teaching experiment. In B. Czarnocha (Ed.), Handbook of mathematics teaching research – A tool for teacher-researchers (pp. 47–58). University of Rzeszów.
Çiltaş, A., & Yılmaz, K. (2013). İlköğretim matematik öğretmeni adaylarının teoremlerin ifadeleri için kurmuş oldukları matematiksel modeller. Eğitim ve Öğretim Araştırmaları Dergisi, 2(2), 107-114
Çoksöyler, N., & Bozkurt, A. (2021). Bilişsel perspektif bağlamında matematiksel modelleme süreci: Altıncı sınıf öğrencilerinin deneyimleri. Buca Eğitim Fakültesi Dergisi, 52, 480–502.
Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. ASCD.
English, L. D (2016). STEM education K-12: Perspectives on integration. English International Journal of STEM Education 3 (3). DOI 10.1186/s40594-016-0036-1
Erbaş, A. K., Kertil, M., Çetinkaya, B., Çakıroğlu, E., Alacalı, C., & Baş, S. (2014). Matematik eğitiminde matematiksel modelleme: Temel kavramlar ve farklı yaklaşımlar. Kuram ve Uygulamada Eğitim Bilimleri, 14(4), 1-21.
Ferri, R. B. (2006). Modelleme sürecinde fazların teorik ve ampirik farklılaşmaları. Zentralblatt für Didaktik der Mathematik, 38, 86–95. https://doi.org/10.1007/BF02655883
İnci, S., & Kaya, V. H. (2022). Eğitimde multidisipliner, disiplinlerarası ve transdisipliner kavramları. Milli Eğitim Dergisi, 235, 2757–2772.
Eurydice. (2011). Mathematics education in Europe: Common challenges and national policies. Education, Audiovisual and Culture Executive Agency.
Kaufman, D., Moss, D. M., & Osborn, T. A. (2003). Sınırların ötesinde: Öğrenme ve öğretmeye disiplinlerarası bir yaklaşım. Praeger.
Küçük, B., Kahraman, S., & İşleyen, T. (2013). Öğretmen adaylarının matematiğe karşı tutumlarının incelenmesi. Gaziantep University Journal of Social Science, 12(1), 178-195.
Lesh, R., & Yoon, C. (2004). Evolving communities of mind: In which development involves several interacting simultaneously developing strands. Mathematical Thinking and Learning, 6(2), 205-226.
Maaß, K. (2006). What are modelling competencies? Zentralblatt für Didaktik der Mathematik, 38(2), 113-142. https://doi.org/10.1007/BF02655885
Max-Neef, M. A. (2005). Foundations of transdisciplinarity. Ecological Economics, 53(1), 5-16. https://doi.org/10.1016/j.ecolecon.2005.01.014
Millî Eğitim Bakanlığı (MEB). (2018). Matematik dersi öğretim programı. Talim ve Terbiye Kurulu Başkanlığı.
Millî Eğitim Bakanlığı. (2018). Fen bilimleri dersi öğretim programı (İlkokul ve ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar). Millî Eğitim Bakanlığı, Temel Eğitim Genel Müdürlüğü.
Millî Eğitim Bakanlığı. (2024). Türkiye Yüzyılı Maarif Modeli öğretim programları ortak metni. Millî Eğitim Bakanlığı.
Nicolescu, B. (2002). Manifesto of transdisciplinarity. SUNY Press.
OECD. (2018). The future of education and skills 2030: Conceptual learning framework. OECD Publishing. Retrieved from https://static1.squarespace.com/static/5e26d2d6fcf7d67bbd37a92e/t/5e411f365af4111d703b7f91/1581326153625/Education-and-AI.pdf
Papageorgiou, G. (2009). The effect of mathematical modeling on students’ affect [Unpublished master's thesis]. Universiteit van Amsterdam.
Pohl, C., & Hadorn, G. H. (2008). Methodological challenges of transdisciplinary research. Natures Sciences Sociétés, 16(2), 111-121. https://doi.org/10.1051/nss:2008035
Tekin-Dede, A., & Bukova-Güzel, E. (2018). A rubric development study for the assessment of modeling skills. The Mathematics Educator, 27(2), 33–72.
Tekin-Dede, A. (2015). Matematik derslerinde öğrencilerin modelleme yeterliklerinin geliştirilmesi: Bir eylem araştırması (Yayın No. 395238) [Doktora tezi, Dokuz Eylül Üniversitesi]. Yükseköğretim Kurulu Tez Merkezi. https://tez.yok.gov.tr
Yıldırım, A., & Şimşek, H. (2022). Eğitimde multidisipliner, disiplinlerarası ve transdisipliner kavramları. Milli Eğitim Dergisi, 235, 2757–2772.
Yoon, C., Dreyfus, T., & Thomas, M. O. J. (2010). How high is the tramping track? Mathematising and applying in a calculus model-eliciting activity. Mathematics Education Research Journal, 22(2), 141–157. https://doi.org/10.1007/BF03217571
Wang, H. (2012). A new era of science education: Science teachers' perceptions and classroom practices of science, technology, engineering, and mathematics (STEM) integration [Unpublished doctoral dissertation]. University of Minnesota.
Wang, H. H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM integration: Teacher perceptions and practice. Journal of Pre-College Engineering Education Research, 1(2), Article 2. https://doi.org/10.5703/1288284314636
Yıldırım, A., & Şimşek, H. (2013). Sosyal bilimlerde nitel araştırma yöntemleri (9. baskı). Seçkin Yayıncılık.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Banu MEMİŞOĞLU, Menekşe Seden TAPAN-BROUTIN

This work is licensed under a Creative Commons Attribution 4.0 International License.